© 2011-2013 by Alexei Kourbatov, JavaScripter.net/math
Main article: Maximal gaps between prime k-tuples
Prime triplets (3-tuples) are the densest permissible clusters of 3 consecutive primes. There are two types of prime triplets:
The observed maximal gaps between prime triplets near p are at most log p times the average gap.
The approximate size of a maximal gap that ends at p is given by the following empirical formula:
whereE(max g3(p)) = a(log(p/a) − 2/3) = O(log4p)
Maximal gaps between prime triplets of each type are listed below.
1st triplet: 2nd triplet: Gap g3(p): 5 11 6 17 41 24 41 101 60 107 191 84 347 461 114 461 641 180 881 1091 210 1607 1871 264 2267 2657 390 2687 3251 564 6197 6827 630 6827 7877 1050 39227 40427 1200 46181 47711 1530 56891 58907 2016 83267 86111 2844 167621 171047 3426 375251 379007 3756 381527 385391 3864 549161 553097 3936 741677 745751 4074 805031 809141 4110 931571 937661 6090 2095361 2103611 8250 2428451 2437691 9240 4769111 4778381 9270 4938287 4948631 10344 12300641 12311147 10506 12652457 12663191 10734 13430171 13441091 10920 14094797 14107727 12930 18074027 18089231 15204 29480651 29500841 20190 107379731 107400017 20286 138778301 138799517 21216 156377861 156403607 25746 242419361 242454281 34920 913183487 913222307 38820 1139296721 1139336111 39390 2146630637 2146672391 41754 2188525331 2188568351 43020 3207540881 3207585191 44310 3577586921 3577639421 52500 7274246711 7274318057 71346 33115389407 33115467521 78114 97128744521 97128825371 80850 99216417017 99216500057 83040 103205810327 103205893751 83424 133645751381 133645853711 102330 373845384527 373845494147 109620 412647825677 412647937127 111450 413307596957 413307728921 131964 1368748574441 1368748707197 132756 1862944563707 1862944700711 137004 2368150202501 2368150349687 147186 2370801522107 2370801671081 148974 3710432509181 3710432675231 166050 5235737405807 5235737580317 174510 8615518909601 8615519100521 190920 10423696470287 10423696665227 194940 10660256412977 10660256613551 200574 11602981439237 11602981647011 207774 21824373608561 21824373830087 221526 36385356561077 36385356802337 241260 81232357111331 81232357386611 275280 186584419495421 186584419772321 276900 297164678680151 297164678975621 295470 428204300934581 428204301233081 298500 450907041535541 450907041850547 315006 464151342563471 464151342898121 334650 484860391301771 484860391645037 343266 666901733009921 666901733361947 352026
1st triplet: 2nd triplet: Gap g3(p): 7 13 6 13 37 24 37 67 30 103 193 90 307 457 150 457 613 156 613 823 210 2137 2377 240 2377 2683 306 2797 3163 366 3463 3847 384 4783 5227 444 5737 6547 810 9433 10267 834 14557 15643 1086 24103 25303 1200 45817 47143 1326 52177 54493 2316 126487 130363 3876 317587 321817 4230 580687 585037 4350 715873 724117 8244 2719663 2728543 8880 6227563 6237013 9450 8114857 8125543 10686 10085623 10096573 10950 10137493 10149277 11784 18773137 18785953 12816 21297553 21311107 13554 25291363 25306867 15504 43472497 43488073 15576 52645423 52661677 16254 69718147 69734653 16506 80002627 80019223 16596 89776327 89795773 19446 90338953 90358897 19944 109060027 109081543 21516 148770907 148809247 38340 1060162843 1060202833 39990 1327914037 1327955593 41556 2562574867 2562620653 45786 2985876133 2985923323 47190 4760009587 4760057833 48246 5557217797 5557277653 59856 10481744677 10481806897 62220 19587414277 19587476563 62286 25302582667 25302648457 65790 30944120407 30944191387 70980 37638900283 37638972667 72384 49356265723 49356340387 74664 49428907933 49428989167 81234 70192637737 70192720303 82566 74734558567 74734648657 90090 111228311647 111228407113 95466 134100150127 134100250717 100590 195126585733 195126688957 103224 239527477753 239527584553 106800 415890988417 415891106857 118440 688823669533 688823797237 127704 906056631937 906056767327 135390 926175746857 926175884923 138066 1157745737047 1157745878893 141846 1208782895053 1208783041927 146874 2124064384483 2124064533817 149334 2543551885573 2543552039053 153480 4321372168453 4321372359523 191070 6136808604343 6136808803753 199410 18292411110217 18292411310077 199860 19057076066317 19057076286553 220236 21794613251773 21794613477097 225324 35806145634613 35806145873077 238464 75359307977293 75359308223467 246174 89903831167897 89903831419687 251790 125428917151957 125428917432697 280740 194629563521143 194629563808363 287220 367947033766573 367947034079923 313350 376957618687747 376957619020813 333066 483633763994653 483633764339287 344634 539785800105313 539785800491887 386574The ratio g3(p)/log4p is never greater than 0.35, i.e. maximal gap sizes are less than log p times the average gap, where p is the prime at the end of the gap.
Copyright © 2011-2013, Alexei Kourbatov, JavaScripter.net.