© 2013 by Alexei Kourbatov, JavaScripter.net/math
Main article: Maximal gaps between prime k-tuples
Prime quintuplets (5-tuples) are the densest permissible clusters of 5 consecutive primes. There are two types of prime quintuplets:
The observed maximal gaps between prime quintuplets near p are at most log p times the average gap.
The approximate size of a maximal gap that ends at p is given by the following empirical formula:
whereE(max g5(p)) = a(log(p/a) − 2/5) = O(log6p)
Maximal gaps between prime quintuplets of each type are listed below.
1st quintuplet: 2nd quintuplet: Gap g5(p):
5 11 6
11 101 90
101 1481 1380
1481 16061 14580
22271 43781 21510
55331 144161 88830
536441 633461 97020
661091 768191 107100
1461401 1573541 112140
1615841 1917731 301890
5527001 5928821 401820
11086841 11664551 577710
35240321 35930171 689850
53266391 54112601 846210
72610121 73467131 857010
92202821 93188981 986160
117458981 119114111 1655130
196091171 198126911 2035740
636118781 638385101 2266320
975348161 977815451 2467290
1156096301 1158711011 2614710
1277816921 1281122231 3305310
1347962381 1351492601 3530220
2195593481 2199473531 3880050
3128295551 3132180971 3885420
4015046591 4020337031 5290440
8280668651 8286382451 5713800
9027127091 9033176981 6049890
15686967971 15693096311 6128340
18901038971 18908988011 7949040
21785624291 21793595561 7971270
30310287431 30321057581 10770150
107604759671 107616100511 11340840
140760439991 140772689501 12249510
162661360481 162673773671 12413190
187735329491 187749510491 14181000
327978626531 327994719461 16092930
508259311991 508275672341 16360350
620537349191 620554105931 16756740
667672901711 667689883031 16981320
1079628551621 1079646141851 17590230
1104604933841 1104624218981 19285140
1182148717481 1182168243071 19525590
1197151034531 1197173264711 22230180
2286697462781 2286720012251 22549470
2435950632251 2435980618781 29986530
3276773115431 3276805283951 32168520
5229301162991 5229337555061 36392070
9196865051651 9196903746881 38695230
14660925945221 14660966101421 40156200
21006417451961 21006458070461 40618500
22175175736991 22175216733491 40996500
22726966063091 22727007515411 41452320
22931291089451 22931338667591 47578140
31060723328351 31060771959221 48630870
85489258071311 85489313115881 55044570
90913430825291 90913489290971 58465680
96730325054171 96730390102391 65048220
199672700175071 199672765913051 65737980
275444947505591 275445018294491 70788900
331992774272981 331992848243801 73970820
465968834865971 465968914851101 79985130
686535413263871 686535495684161 82420290
761914822198961 761914910291531 88092570
1st quintuplet: 2nd quintuplet: Gap g5(p):
7 97 90
97 1867 1770
3457 5647 2190
5647 15727 10080
19417 43777 24360
43777 79687 35910
101107 257857 156750
1621717 1830337 208620
3690517 3995437 304920
5425747 5732137 306390
8799607 9127627 328020
9511417 9933607 422190
16388917 16915267 526350
22678417 23317747 639330
31875577 32582437 706860
37162117 38028577 866460
64210117 65240887 1030770
119732017 120843637 1111620
200271517 201418957 1147440
203169007 204320107 1151100
241307107 242754637 1447530
342235627 344005297 1769670
367358347 369151417 1793070
378200227 380224837 2024610
438140947 440461117 2320170
446609407 448944487 2335080
711616897 714020467 2403570
966813007 970371037 3558030
2044014607 2048210107 4195500
3510456787 3514919917 4463130
4700738167 4705340527 4602360
5798359657 5803569847 5210190
7896734467 7902065527 5331060
12654304207 12659672737 5368530
13890542377 13896088897 5546520
14662830817 14668797037 5966220
15434185927 15440743597 6557670
17375054227 17381644867 6590640
17537596327 17544955777 7359450
25988605537 25997279377 8673840
66407160637 66416495137 9334500
74862035617 74871605947 9570330
77710388047 77723371717 12983670
144124106167 144138703987 14597820
210222262087 210238658797 16396710
585234882097 585252521167 17639070
926017532047 926036335117 18803070
986089952917 986113345747 23392830
2819808136417 2819832258697 24122280
3013422626107 3013449379477 26753370
3538026326827 3538053196957 26870130
4674635167747 4674662545867 27378120
5757142722757 5757171559957 28837200
7464931087717 7464961813867 30726150
8402871269197 8402904566467 33297270
9292699799017 9292733288557 33489540
10985205390997 10985239010737 33619740
12992848206847 12992884792957 36586110
15589051692667 15589094176627 42483960
24096376903597 24096421071127 44167530
37371241083097 37371285854467 44771370
38728669335607 38728728308527 58972920
91572717670537 91572784840627 67170090
109950817237357 109950886775827 69538470
325554440818297 325554513360487 72542190
481567288596127 481567361629087 73032960
501796510663237 501796584764467 74101230
535243109721577 535243185965557 76243980
657351798174427 657351876771637 78597210
818872754682547 818872840949077 86266530
991851356676277 991851464273767 107597490
The ratio g5(p)/log6p is never greater than 0.0987, i.e.
maximal gap sizes are less than log p times the average gap, where p is the prime at the end of the gap.
Copyright © 2013, Alexei Kourbatov, JavaScripter.net.